Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

نویسندگان

  • Naveed Ahmed
  • Gunar Matthies
چکیده

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)methods are accurate of order k+ 1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k+ 1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared. Keywords—convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection-Diffusion-Reaction Equations

This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamlineupwind Petrov–Galerkin (SUPG) and local projection stabilization (LPS) meth-ods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) meth-ods and continuo...

متن کامل

Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes

We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...

متن کامل

Adaptive Discontinuous Galerkin Approximation of Optimal Control Problems Governed by Transient Convection-Diffusion Equations

In this paper, we investigate an a posteriori error estimate of a control constrained optimal control problem governed by a time-dependent convection diffusion equation. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method

The aim of this paper is to investigate theoretically as well as experimentally an algebraic multilevel algorithm for the solution of the linear systems arising from the discontinuous Galerkin method. The smoothed aggregation multigrid, introduced by Vaněk for the conforming finite element method, is applied to low-order discretizations of convection-diffusion equations. For the elliptic model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012